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Abstract— Lower dimensional signal representation schemes
frequently assume that the signal of interest lies in a single
vector space. In the context of the recently developed theory
of compressive sensing, it is often assumed that the signal of
interest is sparse in an orthonormal basis. However, in many
practical applications, this requirement may be too restrictive.
A generalization of the standard sparsity assumption is that the
signal lies in a union of subspaces. Recovery of such signals from
a small number of samples has been studied recently in several
works. Here, we consider the problem of only subspace recovery
in which our goal is to identify the subspace (from the union)
in which the signal lies using a small number of samples, in
the presence of noise. More specifically, we derive performance
bounds and conditions under which reliable subspace recovery is
guaranteed using maximum likelihood (ML) estimation. We begin
by treating general unions and then obtain the results for the
special case in which the subspaces have structure leading to
block sparsity. In our analysis, we treat both general sampling
operators and random sampling matrices. With general unions,
we show that under certain conditions, the number of measure-
ments required for reliable subspace recovery in the presence
of noise via ML is less than that implied using the restricted
isometry property, which guarantees complete signal recovery.
In the special case of block sparse signals, we quantify the
gain achievable over standard sparsity in subspace recovery. Our
results also strengthen existing results on sparse support recovery
in the presence of noise under the standard sparsity model.

Index Terms— Maximum likelihood estimation, union of
linear subspaces, subspace recovery, compressive sensing, block
sparsity.

I. INTRODUCTION

COMPRESSIVE sensing (CS) theory has established that
a small number of measurements acquired via random

projections are sufficient for signal recovery when the signal
of interest is sparse in a certain basis. Consider a length-N
signal x which can be represented in a basis V such that
x = Vc. The signal x is said to be k-sparse in the basis V
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if c has only k nonzero coefficients where k is much smaller
than N . It has been shown in [1]–[3] that O(k log(N/k))
compressive measurements are sufficient to recover x when
the elements of the measurement matrix are random. Signal
recovery may be performed via optimization or greedy based
approaches. A detailed overview of CS can be found in [4].

There are a variety of applications in which complete
signal recovery is not necessary. The problem of sparse
support recovery (equivalently sparsity pattern recovery or
finding the locations of nonzero coefficients of a sparse
signal) arises in a wide variety of areas including source
localization [5], [6], sparse approximation [7], subset selection
in linear regression [8], [9], estimation of frequency band
locations in cognitive radio networks [10]–[12], and signal
denoising [13]. In these applications, often finding the sparsity
pattern of the signal is more important than approximating the
signal itself. Further, in the CS framework, once the sparse
support is identified, the signal can be estimated using standard
techniques.

For the problem of complete sparse signal recovery, there is
a significant amount of work in the literature that focuses on
deriving recovery guarantees and stability with respect to var-
ious lq norms of the reconstruction error. However, as pointed
out in [14], recovery guarantees derived for sparse signals
do not always imply exact recovery of the sparse support.
Although a signal estimate can be close to the original sparse
signal, the estimated signal may have a different support [14].
For example, least-absolute shrinkage and selection operator
(Lasso) has been shown to be information theoretically optimal
in certain regimes of the signal-to-noise ratio (SNR) for
sparse support recovery, while in other regimes of SNR,
Lasso fails with high probability in recovering the sparsity
pattern [14], [15]. Thus, investigation of recovery conditions
for sparse support at any given SNR is an important problem.
Performance limits on reliable recovery of the sparsity pattern
have been derived by several authors in recent work exploit-
ing information theoretic tools [14], [16]–[22]. Most of these
works focused on the standard sparsity model.

There are practical scenarios where structured properties of
the signal are available. Reduced dimensional signal process-
ing for several signal models which go beyond simple sparsity
has been treated in recent literature [23]–[28]. One general
model that can describe many structured problems is that of
a union of subspaces. In this setting, the signal is known to
lie in one out of a possible set of subspaces but the specific
subspace chosen is unknown. Examples include wideband
spectrum sensing [11], time delay estimation with overlapping
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echoes [24], [29], [30], and signals having finite rate
innovation [31], [32]. Conditions under which stable sampling
and recovery is possible in a general union of subspaces model
are derived in [23]–[26]. In [33]–[35], the authors discuss
conditions under which group Lasso is capable of recovering
block sparse signals with and/or without overlaps. However,
the problem of recovering the subspace in which the signal lies
without completely recovering the signal (or the problem of
subspace recovery) has not been treated in this more general
setting.

In this paper, our goal is to investigate the problem of
subspace recovery in the union of subspaces model with
a given sampling operator. We consider subspace recovery
based on the optimal ML decoding scheme in the presence of
noise. While ML is computationally intractable as the signal
dimension increases, the analysis provides a benchmark for
the optimal performance that is achievable with any practical
algorithm. We depict performance in terms of probability of
error of the ML decoder when sampling is performed via an
arbitrary linear sampling operator. Based on an upper bound
on the probability of error, we derive the minimum number
of samples required for asymptotically reliable recovery of
subspaces in terms of an SNR measure, the dimension of
each subspace in the union and a term which quantifies the
dependence or overlap among the subspaces. In the special
case where sampling is performed via random projections
and the subspaces in the union have a specific structure such
that each subspace is a sum of some other k0 subspaces,
we obtain a more explicit expression for the minimum number
of measurements. This number depends on the number of
underlying subspaces, the dimension of each subspace, and the
minimum nonzero block SNR (defined in Section IV.B). The
conventional sparsity model is a special case of this structure.

The asymptotic probability of error of the ML decoder
for sparse support recovery in the presence of noise for the
standard sparsity model was first investigated in [14] followed
by several other authors [16], [17], [22]. In [14], sufficient
conditions were derived on the number of noisy compressive
measurements needed to achieve a vanishing probability of
error asymptotically for sparsity pattern recovery while nec-
essary conditions were considered in [17]. The analyses in
both [14], [17] are based on the assumption that the sampling
operator is random. Here, we follow a similar path assuming
the union of subspaces model. However, there are some key
differences between our derivations and that in [14]. First, we
treat arbitrary (not necessarily random) sampling operators and
assume a general union of subspaces model as opposed to
the standard sparsity model. Further, the results in [14] were
derived based on weak bounds on the probability of error,
thus there is a gap between those results and the number
of measurements required for the exact probability of error
to vanish asymptotically at finite SNR. We consider tighter
bounds on the probability of error leading to tighter results.

The rest of the paper is organized as follows. In Section II,
the problem of subspace recovery from a union of subspace
model is introduced. In Section III, performance limits with
ML decoder for subspace recovery in terms of the prob-
ability of error are derived with a given linear sampling

operator considering a general union of subspaces model.
Conditions under which asymptotically reliable subspace
recovery in the presence of noise is guaranteed are obtained
based on the derived upper bound. The results are extended
in Section IV to the setting where structured properties of
the subspaces in the union are available. We also derive
sufficient conditions for subspace recovery when sampling is
performed via random projections. In Section V, we compare
our results with some existing results in the literature. Practical
algorithms to recover subspaces in the union of subspace
model and numerical results to validate the theoretical claims
are presented in Section VI.

Throughout the paper, we use the following notation. Arbi-
trary vectors in a Hilbert space H, are denoted by lower
case letters, e.g., x . Calligraphic letters, e.g., S, are used
to represent subspaces in H. Vectors in R

N are written in
boldface lower case letters, e.g. x. Scalars (in R) are also
denoted by lower case letters, e.g., x , when there is no
confusion. Matrices are written in boldface upper case letters,
e.g., A. Linear operators and a set of basis vectors for a given
subspace S are denoted by upper case letters, e.g., A. By 0,
we denote a vector with appropriate dimension in which all
elements are zeros, and Ik is the identity matrix of size k. The
conjugate transpose of a matrix A is denoted by A∗. Finally,
||.||2 denotes the l2 norm and |.| is used for both the cardinality
(of a set) and the absolute value (of a scalar). The notation
x ∼ N (μ,�) means that the random vector x is distributed
as multivariate Gaussian with mean μ and the covariance
matrix �; x ∼ X 2

m(λ) denotes that the random variable x is
distributed as Chi squared with m degrees of freedom and non
centrality parameter λ. (The central Chi squared distribution
is denoted by X 2

m). Special functions used in the paper are:
Gaussian Q-function:

Q(x) = 1√
2π

∫ ∞

x
e− t2

2 dt (1)

Gamma function:

�(x) =
∫ ∞

0
t x−1e−t dt (2)

and modified Bessel function with real arguments:

Kν(x) =
∫ ∞

0
e−xcosht cosh(νt)dt . (3)

II. PROBLEM FORMULATION

A. Union of Subspaces

As discussed in [23]–[26], there are many practical scenar-
ios where the signals of interest lie in a union of subspaces.

Definition 1 (Union of Subspaces): A signal x ∈ H lies in
a union of subspaces if x ∈ X where X is defined as

X =
⋃

i

Si (4)

and Si ’s are subspaces of H. A signal x ∈ X if and only if
there exists i0 such that x ∈ Si0 .

Throughout the paper, we assume that the subspaces Si ’s are
finite dimensional and that the number of subspaces is finite.



WIMALAJEEWA et al.: SUBSPACE RECOVERY FROM STRUCTURED UNION OF SUBSPACES 2103

Let Vi = {vim }k−1
m=0 be a basis for Si , and let k be its

dimension (it is noted that while we assume all subspaces
to have the same dimension, the analysis can be easily
extended to the case where different subspaces have different
dimensions). Then each x ∈ Si can be expressed in terms of
a basis expansion

x =
k−1∑
m=0

ci (m)vim

where ci (m) for m = 0, 1, · · · k − 1 are the coefficients
corresponding to the basis Vi . We assume that the subspaces
are distinct (i.e. there are no subspaces such that Si ⊆ S j for
i �= j in the union (4)). We denote by T < ∞ the number of
subspaces in the union X .

B. Structured Union of Subspaces and Block Sparsity

There are certain scenarios in which the signals can be
assumed to lie in more structured union of subspaces as
considered in [25], [28], and [36]. Suppose that each subspace
in the union (4) can be represented as a sum of k0 (out of L)
disjoint subspaces [25], [36]. More specifically,

Si = ⊕
j∈�k0

V j (5)

where {V j }L−1
j=0 are disjoint subspaces, and �k0 contains

k0 indices from {0, 1, · · · , L − 1}. Let d j = dim(V j ) and
N = ∑L−1

j=0 d j . Then there are T = ( L
k0

)
subspaces in the

union. Under this formulation, the dimension of each subspace
in (4) is

k =
∑

j∈�k0

d j .

In the special case where d j = d for all j , k = k0d .
Taking Vj as a basis for V j , a signal in the union can be

written as

x =
∑

j∈�k0

Vj c j (6)

where c j = [c j (0), · · · , c j (d j − 1)]T ∈ R
d j is a d j × 1

coefficient vector corresponding to the basis Vj . Note that we
use the same notation Vj to denote a basis of the subspace S j

in (4) for j = 0, 1, · · · , T − 1 (when discussing the general
union of subspaces model) and also to denote a basis of
the subspace V j in (5) for j = 0, 1, · · · , L − 1 (when
discussing the structured union of subspace model). Let V
be a matrix constructed by concatenating Vi ’s column wise,
such that V = [V0|V1| · · · |VL−1] and c be a N ×1 vector with
c = [cT

0 | · · · |cT
L−1]T . As defined in [25], the vector c ∈ R

N

is called block k-sparse over I = {d0, d1, · · · , dL−1} if all
the elements in ci are zeros for all but k0 indices where
N = ∑L−1

j=0 d j . In this paper, we assume d j = d for all j
so that N = Ld .

The standard sparsity model used in the CS literature is a
special case of this structured union of subspaces model. In the
standard CS framework, x = x is a length-N signal vector
which is k-sparse in an N-dimensional orthonormal basis V
so that x can be represented as x = Vc with c having only

k 
 N significant coefficients. This fits our framework when
d = 1 and Vj is chosen as the j th column vector of the
orthonormal basis V for j = 0, 1, · · · , N − 1. In this case,
L = N and there are T = (N

k

)
subspaces in the union.

C. Observation Model: Linear Sampling

Consider a sampling operator defined by a bounded linear
mapping A of a signal x that lies in an ambient Hilbert
space H. Let A be specified by a set of unique sampling
vectors {am}M−1

m=0 . With these notations, the noisy samples are
given by,

y = Ax + w, (7)

where y is the M×1 measurement vector, and the mth element
of the vector Ax is given by (Ax)m = 〈am, x〉 for
m = 0, 1, · · · , M − 1 where 〈., .〉 denotes the inner product.
The noise vector w is assumed to be Gaussian with mean 0
and covariance matrix σ 2

wIM .
When x ∈ Si for some i in the model (4), the vector of

samples can be equivalently represented in the form of a matrix
vector multiplication:

y = Bi ci + w, (8)

where

Bi = AVi

=

⎛
⎜⎜⎜⎝

〈a0, vi0〉 〈a0, vi1〉 · · · 〈a0, vi(k−1)〉
〈a1, vi0〉 〈a1, vi1〉 · · · 〈a1, vi(k−1)〉

...
...

...
...

〈aM−1, vi0〉 〈aM−1, vi1〉 · · · 〈aM−1, vi(k−1)〉

⎞
⎟⎟⎟⎠

and ci = [ci (0) ci (1) · · · ci (k − 1)]T is the coefficient vector
with respect to the basis Vi . Further, let bim denote the
mth column vector of the matrix Bi for m = 0, 1, · · · , k − 1
and i = 0, 1, · · · , T − 1. We assume that the linear sampling
operator A is a one-to-one mapping between X and AX . Since
{vi0, · · · , vi(k−1)} is a set of linearly independent basis vec-
tors, {bi0, · · · , bi(k−1)} are also linearly independent for each
i = 0, 1, · · · , T − 1. It is worth noting that, while this
one-to-one condition ensures uniqueness, stronger conditions
are required to recover x in a stable manner as discussed
in [24].

D. Subspace Recovery From the Union of Subspaces Model

As discussed in the Introduction, there are applications
where it is sufficient to recover the subspace in which the
signal of interest lies from the union of subspaces model (4)
instead of complete signal recovery. Moreover, if there is a
procedure to correctly identify the subspace with vanishing
probability of error, then the signal x can be reconstructed with
a small l2-norm error using standard techniques. However, if
an algorithm developed for complete signal recovery is used
for subspace recovery, then it may not give an equivalent per-
formance guarantee. This is because, even if such an estimate
of the signal may be close to the true signal with respect to the
considered performance metric (e.g., l2-norm), the subspace in
which the estimated signal lies may be different from the true
subspace. This can happen especially when the SNR is not
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sufficiently large. Our focus in this paper is the investigation
of subspace recovery.

The problem of subspace recovery is to identify the sub-
space in which the signal x lies. The estimated subspace, Ŝ , via
any recovery scheme can be expressed as

Ŝ = ζ(y) (9)

where ζ(·) is a mapping from the observation vector y to
an estimated subspace Ŝ ∈ {S0, · · · ,ST −1}. The performance
metric used to evaluate the quality of the estimate (9) is taken
as the average probability of error:

Pe =
∑
S

Pr(ζ(y) �= S|S)Pr(S).

We say that the mapping ζ(y) is capable of providing
asymptotically reliable subspace recovery if Pe → 0 as
M → ∞. In this paper, we consider subspace recovery via
ML estimation. Our goal is to address the following issues.

• Performance of the ML estimation scheme in terms of
probability of error in recovering the subspaces from
the union of subspaces model (4) in the presence of
noise. We are also interested in conditions under which
asymptotically reliable subspace recovery is guaranteed
with a given sampling operator.

• How much gain in terms of the number of samples
required for subspace recovery can be achieved if further
information on structure is available for the subspaces
in (4) compared to the case of no additional structure.

• Illustration of the performance gap between
ML estimation and computationally tractable algorithms
for subspace recovery at finite SNR.

The main results of the paper can be summarized as follows.
With the general union of subspaces model as defined in (4),
and for a given sampling operator, the minimum number of
samples required for asymptotically reliable subspace recovery
in the presence of noise is

M > k + η3

f (SN R)
log(T̄0) (10)

where k is the dimension of each subspace, f (SN R) is a
measure of the minimum SNR of the sampled signal projected
onto the null space of any subspace in the union, T̄0 is
a measure of the number of subspaces in the union with
maximum dependence where T̄0 ≤ T and η3 is a constant
(formal definitions of all these terms are given in Section III).
For the special case where each subspace in the union (4)
can be expressed as a sum of k0 subspaces out of L the
problem of subspace recovery reduces to that of block sparsity
pattern recovery. Assuming that the sampling operator is repre-
sented by random projections, the number of samples required
for asymptotically reliable block sparsity pattern recovery is
given by

M > k + η4

BSN Rmin
log(L − k0) (11)

where BSN Rmin is the minimum nonzero block SNR and η4 is
a constant. When d = 1 and L = N where N is the signal

dimension, the block sparsity model reduces to the standard
sparsity model. Then, our result shows that

M > k + η2

C SN Rmin
log(N − k) (12)

measurements are required for reliable sparsity pattern recov-
ery where C SN Rmin(≤ BS N Rmin

d ) is the minimum component
SNR of the signal. Thus, from (11) and (12), we observe
that the number of measurements required for asymptoti-
cally reliable subspace recovery beyond the sparsity index
(i.e., M − k) reduces approximately d times with a block
sparsity model (so that k = k0d) compared to the standard
sparsity model. A detailed comparison between our results and
existing results in the literature is given in Section V.

III. SUBSPACE RECOVERY WITH GENERAL UNIONS

The problem of finding the true subspace via ML estimation
becomes finding the index î such that,

î = arg max
i=0,··· ,T −1

p(y|Bi ).

When x ∈ Si in (4) for some i , and using the observation
model (8), we have p(y|Bi ) = N (Bi ci , σ

2
wIM ). The signal x

is assumed to be deterministic but unknown. Thus, when
x ∈ Si , the coefficient vector ci with respect to a given
basis Bi is unknown. Assuming that each Bi has rank k for
i = 0, · · · , T − 1, the ML estimate of ci which maximizes
p(y|Bi) is given by ĉi = (B∗

i Bi )
−1B∗

i y. This results in

log(max
ci

p(y|Bi )) = log

(
1

(2πσ 2
w)M/2

)
− 1

2σ 2
w

||y − Pi y||22

= log

(
1

(2πσ 2
w)M/2

)
− 1

2σ 2
w

||P⊥
i y||22

where Pi = Bi (B∗
i Bi )

−1B∗
i is the orthogonal projector onto

the span of {bim }k−1
m=0 and P⊥

i = I − Pi . Thus, the estimated
index of the subspace by ML estimation is

î = arg min
i=0,··· ,T −1

||P⊥
i y||22.

The probability of error using ML estimation is given by

Pe = Pr(Best imated �= Btrue) =
∑

i

Pr(î �= i |Bi )Pr(Bi )

≤
∑

i

∑
j �=i

Pr(î = i |B = B j )Pr(B = B j ) (13)

where Pr(î = i |B = B j ) is the probability of selecting Si

when the true subspace is S j . Since ML estimation chooses
the subspace Si over S j when ||P⊥

i y||22 − ||P⊥
j y||22 < 0,

Pr(î = i |B = B j ) for i �= j is given by

Pr(î = i |B = B j ) = Pr(||P⊥
i y||22 − ||P⊥

j y||22 < 0).

Let 
i j (y) = ||P⊥
i y||22 − ||P⊥

j y||22 for i �= j . When the
true subspace is S j so that Ax = B j c j , we have ||P⊥

j y||22 =
||P⊥

j w||22 and

P⊥
i y = P⊥

i Ax + P⊥
i w

= P⊥
i B j c j + P⊥

i w = P⊥
i B j\ic j\i + P⊥

i w
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where

B j\ic j\i =
∑

b jm /∈R(Bi )

b jmc j (m)

and R(A) denotes the range space of the matrix A. More
specifically, the M ×l matrix B j\i contains the columns of B j

which are not in the range space of the matrix Bi and l is the
number of columns in B j\i . The l ×1 vector c j\i contains the
elements of c j corresponding to the column vectors in B j\i .

We conclude that, the decision statistic for selecting
Si over S j is given by


i j (y) = ||P⊥
i (B j\ic j\i + w)||22 − ||P⊥

j w||22
and

Pr(
i j (y) < 0) = Pr

(
||P⊥

i (B j\ic j\i + w)||22
||P⊥

j w||22
< 1

)
.

When B j is given, the random variable g1 = ||P⊥
i (B j\ic j\i +

w)||22/σ 2
w is a non-central Chi squared random variable with

M − k degrees of freedom and non-centrality parameter
||P⊥

i (B j\i c j\i)||22/σ 2
w . The random variable g2 = ||P⊥

j w||22/σ 2
w

is a (central) Chi-squared random variable with M −k degrees
of freedom. The two random variables g1 and g2 are, in
general, correlated and the computation of the exact value of
Pr

(

i j (y) < 0

)
is difficult. Below we derive an upper bound

on the quantity Pr
(

i j (y) < 0

)
following techniques similar

to those proposed in [14].

A. Upper Bound on Pr
(

i j (y) < 0

)
For clarity, we introduce the following notation. Let W j\i

be the set consisting of column indices of B j such that
b jm /∈ R(Bi ) for m = 0, 1, · · · k − 1 and i �= j
(i, j = 0, 1, · · · , T − 1). We then have that |W j\i | = l,
where l can take values from 1, 2, · · · , k.

Lemma 1: Consider a sampling operator A. For any given
signal x ∈ S j so that Ax = B j c j , the probability of error in
selecting the subspace Si over S j , is upper bounded by

Pr(
i j (y) < 0) ≤ Q

(
1

2
(1 − 2η0)

√
λ j\i

)
+ �

(
l, λ j\i

)
(14)

where

λ j\i = 1

σ 2
w

||P⊥
i B j\i c j\i ||22, (15)

�
(
l, λ j\i

) =
√

2

2l�(l/2)
(η0λ j\i )

l/2−1/2Kl/2−1/2

(
η0λ j\i

2

)
,

Q(x) is the Gaussian Q function (1), �(x) is the Gamma
function (2), Kν(x) is the modified Bessel function (3), and
0 < η0 < 1

2 .
Proof: See Appendix A.

Theorem 1: Assuming that the true subspace is chosen
uniformly at random from T subspaces in the union (4), the

average probability of error of ML estimation for subspace
recovery is upper bounded by

Pe ≤ 1

T

T −1∑
i=0

T −1∑
j=0

Q

(
1

2
(1 − 2η0)

√
λ j\i

)
+ �

(
l, λ j\i

)

(16)

where λ j\i , η0, Q, � are as defined in Lemma 1.
Proof: The proof follows from Lemma 1 and (13).

In general, the subspaces Si and S j can overlap; i.e. there
can be elements in S j which are also in Si . However, one
subspace can not lie in another subspace entirely; i.e. all
subspaces Si are distinct for i = 0, 1, · · · , T − 1. As defined
before, W j\i contains the column indices of B j which are
not in R(Bi ) and |W j\i | = l for any i �= j where l
takes values from 1, 2, · · · , k. As l increases, the overlap
of the two subspaces decreases resulting in more separable
subspaces. In the special case where S j and Si do not intersect
at all, we have l = k. Thus, l can be considered as a
measure of overlap between any two subspaces S j and Si

for i �= j in the union (4). For given l, the probability
Pr(
i j (y) < 0) in (14) monotonically decreases as a function
of λ j\i , defined in Lemma 1. This implies that when λ j\i

is large, the probability of selecting Si given that the true
subspace is S j decreases. In other words λ j\i , characterizes
the error in selecting the subspace Si over S j for i �= j when
the true subspace is S j . It is, therefore, of interest to further
investigate the quantity λ j\i .

B. Evaluation of λ j\i

The value of λ j\i given by (15) depends
on ||P⊥

i B j\ic j\i ||22 (= ||P⊥
i B j c j ||22 = ||P⊥

i Ax ||22). When
the true subspace is assumed to be S j , this quantity denotes
the energy of the sampled signal Ax projected onto the
null space of Bi ; i.e., the energy of the sampled signal
which is unaccounted for by Si for i �= j . Therefore, when
||P⊥

i B j\ic j\i ||22 is large, the probability that the subspace
Si is selected as the true subspace becomes small. Further,
if S j ⊆ Si for any Si , we have ||P⊥

i B j\ic j\i ||22 = 0. However,
this cannot happen based on our assumption that there is no
subspace in the union which completely overlaps another.
Thus, λ j\i > 0.

Let the eigendecomposition of P⊥
i be P⊥

i = Qi�i QT
i where

Qi is a unitary matrix consisting of eigenvectors of P⊥
i and �i

is a diagonal matrix in which the diagonal elements represent
eigenvalues of P⊥

i which are M − k ones and k zeros. Then,
for given l,

λ j\i =
∑

m∈Qi

α2
m,i (l) ≥ (M − k)α2

min,l (17)

where αm,i (l) = 1
σw

〈qm,i , B j\i c j\i〉 for given l, qm,i is the
mth eigenvector of P⊥

i , Qi is the set containing indices
corresponding to nonzero eigenvalues where |Qi | = M − k
and αmin,l = min

i;i �= j
|αm,i (l)|.

Note that (M − k)α2
min,l is a measure of the minimum

SNR of the sampled signal, Ax , projected onto the null space
of any subspace Si for i �= j , i = 0, 1, · · · , T − 1 such that
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|W j\i | = l given that the true subspace in which the signal
lies is S j .

For a given subspace S j , define Tj (l) to be the number
of subspaces Si such that |W j\i | = l. With these nota-
tions, the probability of error in (16) can be further upper
bounded by,

Pe ≤ 1

T

T −1∑
j=0

k∑
l=1

Tj (l)

(
Q

(
1

2
(1 − 2η0)

√
(M − k)α2

min,l

)

+ �
(

l, (M − k)α2
min,l

))
(18)

where

�
(

l, (M − k)α2
min,l

)

=
√

2

2l�
( l

2

) (η0(M − k)α2
min,l)

l/2−1/2Kl/2−1/2

×
(

η0(M − k)
α2

min,l

2

)
.

To obtain (18) we used the facts that Q(x) is monotoni-
cally non increasing in x , and �(s, x) is monotonically non
increasing in x for given s when x > 0.

The quantity Tj (l) is a measure of the overlap between S j

and any subspace Si for i �= j . To compute Tj (l) explicitly,
the specific structures of the subspaces should be known. For
example, in the standard sparsity model used in CS in which
the union in (4) consists of T = (N

k

)
subspaces from an ortho-

normal basis V of dimension N , there are
(k

l

)(N−k
l

)
number

of sets such that |W j\i | = l, thus Tj (l) = (k
l

)(N−k
l

)
. In that

particular case, Tj (l) is the same for all j = 0, 1, · · · , T − 1.
To further upper bound (18), we let

T0(l) = max
j=0,1,··· ,T −1

Tj (l). (19)

Then,

Pe ≤
k∑

l=1

T0(l)

(
Q

(
1

2
(1 − 2η0)

√
(M − k)α2

min,l

)

+ �
(

l, (M − k)α2
min,l

))
. (20)

Theorem 2: Let α2
min,l and T0(l) be as defined in

(17) and (19), respectively. Suppose that sampling is
performed via a sampling operator A. Then Pe in (20)
vanishes asymptotically (i.e., lim

(M−k)→∞Pe → 0) if the follow-

ing condition is satisfied:

M > k + max{M1, M2}
where

M1 = max
l=1,··· ,k { f1(l)}

M2 = max
l=1,··· ,k { f2(l)}

with

f1(l) = 8

(1 − 2η0)2α2
min,l

{log(T0(l)) + log(1/2)},

f2(l) = 2(k/2 + r0 − 1)

r0η0α
2
min,l

{
log(T0(l)) + log

(
2b0√

π

)}

0 < η0 < 1/2, b0 =
√

2π
4 and r0 > 0.

Proof: See Appendix B.
Let li ∈ {1, · · · , k} be the value of l which maximizes

fi (l) as defined in Theorem 2 for i = 1, 2. For M2, it can
be verified that we can find constants η0 and r0 in the defined
regimes such that 8

(1−2η0)2 > 2(k/2+r0−1)
r0η0

if k is fairly small.

The dominant factor of M1 and M2 can be written in the
form of η3

ᾱ2
min

log(T̄0) where ᾱ2
min and T̄0 are the corresponding

values of α2
min,l and T0(l) when l = l0 for l0 ∈ {l1, l2} and η3

is an appropriate constant. Since, most of the scenarios we are
interested in are for the case where k is sufficiently small, the
minimum number of samples required for reliable subspace
recovery becomes

M ≥ k + η3

ᾱ2
min

log(T̄0).

It is further noted that T0(l) ≤ T for all l and thus T̄0 ≤ T
where T is the total number of subspaces in the union (4).

C. Random Sampling

Next, we consider the special case where the sampling
operator is a M × N matrix in which the elements are
realizations of a random variable (e.g. Gaussian). In this case,
Bi = AVi in (8) where A is the random sampling matrix
and Vi = [vi0| · · · |vi(k−1)] is the N × k matrix in which
columns consist of the basis vectors of the subspace Si for
i = 0, 1, · · · , T − 1. The only term which depends on the
sampling operator in the expression for the upper bound on
the probability of error in (16) is λ j\i . When the sampling
operator is a random matrix, λ j\i can be evaluated as follows.

Proposition 1: Suppose that the sampling matrix A consists
of elements drawn from a Gaussian ensemble with mean zero
and variance 1. When M − k is sufficiently large, we may
approximate λ j\i as

λ j\i → 1

σ 2
w

(M − k)||
∑

m∈W j\i

v jmc j (m)||22

where W j\i (l = |W j\i |) denotes the set consisting of indices
of basis vectors in S j which are not in Si .

Proof: See Appendix C.
The quantity

∑
m∈W j\i

v jmc j (m) is the portion of the original

signal x that is unaccounted for by the subspace Si when the
true subspace is S j for j �= i . Let

α̃2
min,l = 1

σ 2
w

min
i, j, j �=i

||
∑

m∈W j\i

v jmc j (m)||22

be the minimum (over i, j = 0, 1, · · · , T − 1) SNR of
the original signal x which is unaccounted for by the
subspace Si when the true subspace is S j such that |W j\| = l
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for j �= i . Then, with random sampling, the upper
bound on the probability of error of ML estimation
in (16) reduces to (20) after replacing α2

min,l in (20) by α̃2
min,l .

It is worth mentioning that α2
min,l in (20) is a measure of

SNR after sampling while α̃2
min,l is a measure of SNR before

sampling the signal.

IV. SUBSPACE RECOVERY FROM STRUCTURED

UNION OF SUBSPACES

In this section, we simplify the results obtained
in Section III when the subspaces in the union (4) have
structured properties leading to block sparsity.

A. Block Sparsity

With the block sparsity model as discussed
in Subsection II.B, the observation vector y can be written in
the form of

y = AV c + w = Bc + w (21)

where B = AV is a M × N matrix, V = [V0|V1| · · · |VL−1]
is as defined in Subsection II.B and c has L blocks (of size d
each) in which all but k0 blocks are zeros; i.e., c is a block
k0-sparse vector. Letting B[i ] = AVi be a M × d matrix, we
can represent B as a concatenation of column blocks B[i ] for
i = 0, 1, · · · , L − 1. With this specific structure, the subspace
recovery problem reduces to finding the indices of blocks in c
such that the elements inside that block are nonzero, i.e., the
problem of finding the block sparsity pattern. In addition to the
structured union of subspaces model considered here in which
the block sparsity pattern is observed, there are other instances
where block sparsity arises such as in multiband signals [37],
and in measurements of gene expression levels [27], [38].

Define the support set of the block sparse signal c as

U := {i ∈ {0, 1, · · · , L − 1}|ci �= 0}
which consists of the indices of the subspaces in the sum
in (6) or the indices of the nonzero blocks in c. With the
above formulation, there are T = ( L

k0

)
such support sets and

the j th support set is denoted by U j for j = 0, 1, · · · , T − 1.
Given that the true block support set is U j , the measurement

vector in (21) can be written as,

y = B̄ j c̄ j + w

where B̄ j = AV̄j , V̄ j = [Vu0
j
| · · · |V

u
k0−1
j

] and um
j denotes

the mth index in the set U j for m = 0, 1, · · · , k0 − 1.
Similar interpretation holds for the vector c̄ j . To compute
the minimum number of samples required for asymptotically
reliable subspace recovery based on ML estimation, we follow
a similar approach as in Theorem 2 with appropriate notation
changes. In this case, we can explicitly find T0(l): for given l,
there are

(k0
l

)(L−k0
l

)
number of sets such that |U j\i | = l for

any given U j . Thus Tj (l) = T0(l) = (k0
l

)(L−k0
l

)
. In the next

section, we extend the analysis to the case where the sampling
operator is represented by random projections.

B. Sampling via Random Projections
We assume that the signal of interest x is a N × 1 vector

and the sampling operator is a M × N matrix with random
elements. Further, assume that the N × N basis matrix V
defined in Section II.B is orthonormal. Then,

y = Bc + w (22)

where B = AV, V is a N × N orthonormal matrix, c
is a block sparse signal with k0 nonzero blocks each of
length d and elements in A are drawn from a random
ensemble.

Compared to the analysis in Subsection III.C with the
block sparsity model, we can further simplify the expression
obtained for λ j\i in Proposition 1. We define the minimum
nonzero block SNR as follows:

Definition 2: The minimum nonzero block SNR is defined
as BSNRmin = 1

σ 2
w

min
m∈U

||cm ||22 where U is the set containing

the indices corresponding to nonzero blocks.
Proposition 2: Let BSN Rmin be the minimum nonzero

block SNR of a block sparse signal. When the matrix A
consists of elements drawn from a Gaussian ensemble with
mean zero and variance 1, for any U j and Ui with l = |U j\i |
we have

λ j\i = 1

σ 2
w

(M − k0d)

l−1∑
m=0

||Vum
j\i

cum
j\i

||22
≥ (M − k0d)lBSNRmin

where um
j\i denotes the mth index of the set U j\i which contains

the indices of the subspaces in U j which are not in Ui .
Proof: The proof follows from Proposition 1 and the

following results:

||
l−1∑
m=0

Vum
j\i

cum
j\i

||22 = 〈
l−1∑
m=0

Vum
j\i

cum
j\i

,

l−1∑
m=0

Vum
j\i

cum
j\i

〉

=
l−1∑
m=0

〈Vum
j\i

cum
j\i

, Vum
j\i

cum
j\i

〉

+
∑
m �=t

〈Vum
j\i

cum
j\i

, Vut
j\i

cut
j\i

〉

=
l−1∑
m=0

||Vum
j\i

cum
j\i

||22 (23)

where the last equality is due to the fact that the columns of V
are orthogonal. Then (23) is lower bounded by,

||
l−1∑
m=0

Vum
j\i

cum
j\i

||22 ≥ σ 2
wlBSNRmin

which completes the proof.
Corollary 1: When the sampling operator is a random

matrix with elements drawn from a Gaussian ensemble with
mean zero and the variance 1, the upper bound on the
probability of error of ML estimation in (16) for block sparsity
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pattern recovery reduces to

Pe ≤
k0∑

l=1

(
k0

l

)(
L − k0

l

)

×
(

Q

(
1

2
(1 − 2η0)

√
(M − k)lBSNRmin

)

+ � (l, BSNRmin)

)
(24)

where k0 = k/d,

� (l, BSNRmin) =
√

2

2l�(l/2)
(η0(M−k0d)lBSNRmin)

l/2−1/2

Kl/2−1/2(η0(M − k0d)lBSNRmin/2) (25)

and 0 < η0 < 1/2.
Next, we investigate sufficient conditions which state how

the number of samples M scales with the other parame-
ters (L, k0, d, BSNRmin) to ensure that the probability of
error in (24) vanishes asymptotically with the block sparse
model (22).

Lemma 2: When (M − k)BSNRmin → ∞, the probability
of error of ML estimation (24) in recovering the block sparsity
pattern vanishes asymptotically if the following conditions are
satisfied:

M > k + max{M̄1, M̄2} (26)

where

M̄1 = 16

BSN Rmin(1 − 2η0)2

(
log(L − k0) + log

(
e√
2

))

(27)

M̄2 = 4(k0/2 + r0 − 1)

η0r0BSNRmin

{
log(L − k0) + 1

2
log

(
2b0e2
√

π

)}

(28)

and 0 < η0 < 1
2 , r0 > 0 and b0 =

√
2π
4 are constants.

Proof: Proof follows from Theorem 2 and using the
relations, that

(k0
l

) ≤ (L−k0
l

)
for k0 ≤ L/2, and log(

(L−k0
l

)
) ≤

l log
(

e(L−k0)
l

)
.

From Lemma 2, we can write the minimum number of ran-
dom samples required for reliable block sparsity pattern recov-
ery asymptotically in the form of O(k + η4

BS N Rmin
log(L − k0))

for some constant η4 in the case where k0 is sufficiently small.

C. Revisiting the Standard Sparsity Model

In the standard sparsity model considered widely in the
CS literature, the subspaces in the union (4) are assumed to

be k-dimensional subspaces of an orthonormal basis. Define
the minimum component SNR,

CSNRmin = min
m∈U ,i=0,··· ,d−1

||cm(i)||22
σ 2

w

(29)

so that BSN Rmin ≥ dC SN Rmin. Then, when the sampling
is performed via a random matrix, the probability of error
of ML estimation with the standard sparsity model is upper
bounded as in (30), as shown at the bottom of this page,
where � (l, CSNRmin) is as defined in Corollary 1. With
these notations, the probability of error of ML estimation
with block sparsity model (24) can be rewritten as in (31),
as shown at the bottom of this page, where L = N/d and
k0 = k/d as defined previously. By obtaining the conditions
under which Pe in (30) and (31) vanishes asymptotically, it
can be shown that the dominant part of the required number of
random samples for reliable subspace recovery asymptotically
in the presence of noise can be expressed in the form of
O(k + 1

d
η̂1

C S N Rmin
log(L − k0)) with block sparsity model and

O(k + η̂2
C S N Rmin

(log(N − k))) with the standard sparsity model

where η̂1 and η̂2 are positive constants. Thus, when the signal
x exhibits block sparsity pattern with k = k0d where k is the
total number of non zero coefficients of the sparse signal, k0
is the number of blocks and d is the block size, the required
number of random samples beyond k (i.e. in terms of M−k) is
reduced by approximately a factor of d compared to that with
the standard sparsity model. Note that the above analysis is
for the worst case, i.e. the upper bounds on the probability of
error are obtained considering the minimum block/component
SNR. The actual number of measurements required for reliable
subspace recovery can be less than that predicted in Lemma 2.

V. COMPARISON WITH EXISTING RESULTS

A. Support Recovery in the Standard Sparsity Model

The most related existing work on sufficient conditions for
ML estimation to succeed in the presence of noise with the
standard sparsity model is presented in [14]. There, taking the
canonical basis as the sparsifying basis, the results are derived
based on the following bound on the probability of error:

Pe ≤
k∑

l=1

(
k

l

)(
N − k

l

)
4 exp

{
− (M − k)lC SN Rmin

64(lC SN Rmin + 8)

}
.

(32)

When C SN Rmin → ∞, it can be easily seen that this upper
bound is bounded away from zero. Based on (32), it was shown
in [14] that

M > k + (η1 + 2048) max
{

M̃1, M̃2

}
(33)

Pe ≤
k∑

l=1

(
k

l

)(
N − k

l

)(
Q

(
1

2
(1 − 2η0)

√
(M − k)lCSNRmin

)
+ � (l, CSNRmin)

)
(30)

Pe ≤
k0∑

l=1

(
k0

l

)(
L − k0

l

)(
Q

(
1

2
(1 − 2η0)

√
(M − k)ldCSNRmin

)
+ � (l, dCSNRmin)

)
(31)
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measurements are required for asymptotically reliable sparsity
pattern recovery where

M̃1 = log

(
N − k

k

)
, M̃2 = log(N − k)

C SN Rmin

and η1 is a constant (which is different from the
one used earlier in the paper). When the minimum
component SNR, C SN Rmin → ∞, ML estimation
requires k + (η1 + 2048)k log((N − k)/k) measurements for
asymptotically reliable recovery, which is much larger than k.
However, as shown in [17] and [39], when the measurement
noise power is negligible (or in the no noise case), the
exhaustive search decoder is capable of recovering the sparsity
pattern with M = k + 1 measurements with high probability.
Thus, the limits predicted by existing results show a gap with
what is actually required.

When d = 1, V is the standard canonical basis, and A is
a random Gaussian matrix, the structured union of subspaces
model considered in Section IV (specifically the equation (22))
is the same as the model considered in [14]. Our results show
that when C SN Rmin → ∞, the upper bound on the probability
of error in (30) vanishes with the standard sparsity model
when M > k. More specifically, when C SN Rmin → ∞,
our results imply that O(k) measurements are sufficient for
asymptotically reliable sparsity pattern recovery. Further, at
finite C SN Rmin, when M̃2 dominates M̃1 in (33) the lower
bound in [14] has the same scaling with respect to L, k, d and
C SN Rmin to that is obtained in this paper with the standard
sparsity model.

B. Signal Recovery With Union of Subspaces

The problem of stable recovery of signals that
lie in a union of subspaces model is addressed
in [23]–[26], and [28]. In these works, the main focuss is to
derive sufficient conditions that ensure reliable recovery of the
complete signals. As an example, the following result is shown
in [26].

Theorem 3: For any given t > 0, if

M >
2

cδ

(
log(2T ) + k log

(
12

δ

)
+ t

)
(34)

then, A in (7) satisfies the restricted isometry property (RIP)
with the restricted isometry constant δ (for formal definition
of RIP readers may refer to [26]).

In [27], the authors derived sufficient conditions for com-
plete signal recovery in the block sparsity model. When the
samples are acquired via a random matrix (elements in A
are Gaussian) with the notations used in Section IVB, the
minimum number of samples required for the sampling matrix
to satisfy block RIP with high probability is given by (from
Theorem 3 and [27])

M ≥ 36

7δ

(
log

(
2

(
L

k0

))
+ k log

(
12

δ

)
+ t

)
(35)

for some t > 0 where 0 < δ < 1 is the restricted isometry con-
stant. This is roughly on the order of η̃1k + η̃2k0 log(L/k0) for
some positive constants η̃1 and η̃2. Thus, block sparse signals

Algorithm 1 Block-OMP (B-OMP) for Block Sparsity Pattern
Recovery
Input: y, B, k0

1) Initialize t = 1, Û(0) = ∅, residual vector r0 = y
2) Find λ(t) such that λ(t) = arg max

i=0,··· ,L−1
||B[i ]∗rt−1||2

3) Set Û(t) = Û(t − 1) ∪ {λ(t)}
4) Compute the projection operator

P(t) = B(Û(t))
(

B(Û(t))T B(Û(t))
)−1

B(Û(t))T

Update the residual vector: rt = (I − P(t))y (note:
B(Û(t)) denotes the submatrix of B in which columns
are taken from B corresponding to the indices in Û(t))

5) Increment t = t+1 and go to step 2 if t ≤ k0, otherwise,
stop and set Û = Û(t − 1)

can be reliably recovered using computationally tractable
algorithms with η̃1k + η̃2k0 log(L/k0) measurements when
there is no noise. In the presence of noise, the BP based
algorithm developed in [25] is shown to be robust so that
the norm of the recovery error is bounded by the noise level.

As shown in Section IV.B, it requires roughly
k + (η4/BSN Rmin) log(L − k0) measurements (when k0
is fairly small) for reliable block sparsity pattern recovery
with ML estimation. Here, the second term is significant at
finite BSN Rmin vanishes when BSN Rmin → ∞. At finite
BSN Rmin, when k0 is sublinear w.r.t. L, it can be shown that
k0 log(L/k0) >> log(L − k0). Thus, in that region of k0,
the relevant scaling obtained in (35) is larger than what is
required by ML estimation at finite BSN Rmin. The exact
difference between them depends on the value of BSN Rmin
and the relevant constants.

In [34], the authors considered the problem of
recovering a block sparse signal using an overlapping
group Lasso algorithm when the measurement matrix
is Gaussian. The authors have shown that with
O(k + (

√
2 log(L − k0) +

√
d̃)2d̃) measurements, exact

signal recovery with block sparsity is possible where d̃
is the largest block size. It can be seen that this scaling
(with equal block sizes where d̃ = d) is larger than that
is obtained in this paper, O(k + η4

BS N Rmin
log(L − k0)).

This observation is intuitive since the ML method
requires less measurements than suboptimal methods like
overlapping Lasso.

VI. NUMERICAL RESULTS

Several computationally tractable algorithms for sparsity
pattern recovery with standard sparsity have been derived
and discussed quite extensively in the literature. Extensions
of such algorithms for model based or structured CS have
also been considered. For example, extensions of CoSamp
and iterative hard thresholding algorithms for model based CS
were developed in [23]. Extensions of OMP for block sparsity
pattern recovery (BOMP) were considered in [27] and [40]
while [25], [41], [42] considered the Group Lasso algorithm
for block sparse signal recovery.
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Fig. 1. Exact probability of error and the derived upper bound on the
probability of error of the ML recovery for block sparsity pattern recovery.
(a) N = 50, L = 25, d = 2, B S N Rmin = 13d B . (b) N = L = 50, d = 1,
C S N Rmin = 10d B .

Our goal in this section is to validate the tightness of
the derived upper bounds on the probability of error of
ML estimation and provide numerical results to illustrate
the performance gap when employing practical algorithms
for subspace recovery. Simulating ML algorithm is difficult
due to its high computational complexity in high dimensions.
Nevertheless, we show the performance for reasonably sized
signal dimensions and samples just to demonstrate the tight-
ness of the probability of error bound. The performance of the
ML algorithm is compared to block-OMP as proposed in [27]
which is provided in Algorithm 1 where the set Û contains
the estimated indices of the nonzero blocks of a block sparse
signal.

Results in Figures 1 and 2, assume that x is block sparse
and the sampling operator a random matrix in which ele-
ments are drawn from a Gaussian ensemble with mean zero

Fig. 2. Performance of ML estimation and the B-OMP algorithm for block
sparsity pattern recovery; L = 25, k0 = 5, d = 2, and thus k = 10, N = 50.

and variance 1. Thus, V is the standard canonical basis.
In Fig. 1(a), the exact probability of error of ML estimation
(obtained via simulation) and the upper bound on the prob-
ability of error derived in (24) vs M/N are shown. In the
block sparsity model, we let N = 50, d = 2, L = 25,
BSN Rmin = 13d B . The three different curves correspond to
k0 = 3, 4, 5. In Fig. 1 (b), we let d = 1 (i.e. the standard
sparsity model) so that the upper bound on the probability
of error reduces to (30). We also let C SN Rmin = 10d B .
The different curves correspond to different values of k.
To compute the exact probability of error 105 Monte Carlo
runs were used. In the upper bounds (24) and (30), we let
η0 = 1/4. It can be seen from Fig. 1(a) and 1(b) that the
derived upper bound on the probability of error is fairly tight
especially as M/N increases. The tightness is more significant
in Fig. 1(a). It should be noted that for d = 2, we have
k = k0d , thus the total number of non zero coefficients is
larger in Fig. 1(a) than that with d = 1 in Fig. 1(b). Thus,
the derived upper bound becomes tighter as k increases. It is
also worth mentioning that the derived upper bound on the
probability of error in [14] with the standard sparsity model
(as in (32)) is bounded away from 1 for the selected parameter
values mentioned above.

In Fig. 2, the performance of the block sparsity pattern
recovery with ML and B-OMP algorithms is shown when
BSN Rmin varies. In Fig. 2, we let k0 = 5, L = 25,
d = 2 and N = 50. For B-OMP, 104 runs are performed
for a given matrix and averaged over 100 runs. The ratio
between the minimum and maximum block SNR in both
cases considered is set at 1.825. From Fig. 2 it can be seen
that the derived upper bound on the probability of error of
ML estimation is fairly close to the exact probability error
obtained via Monte Carlo simulations, especially as BSN Rmin
increases. Further, for a given finite BSN Rmin, there seems
to be a considerable performance gap between B-OMP and
ML estimation. That is the price to pay for the computational
complexity of ML estimation vs the computationally efficient
B-OMP algorithm.
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VII. CONCLUSION

In this paper, we investigated the problem of subspace
recovery based on reduced dimensional samples when the
signal of interest lies in a union of subspaces. With a
given sampling operator, we considered the performance of
ML estimation for subspace recovery in the presence of noise
in terms of the probability of error. We further obtained con-
ditions under which asymptotically reliable subspace recovery
is guaranteed.

We extended the analysis to a special case of union of
subspaces model which reduces to block sparsity. When the
samples are obtained via a random matrix, sufficient conditions
required for asymptotically reliable block sparsity pattern
recovery with ML estimation were derived. Performance
gain in terms of the minimum number of samples required
for asymptotically reliable subspace recovery with the block
sparse model was quantified compared to that with the
standard sparsity model. Our results further strengthen the
existing results for sparsity pattern recovery with the standard
sparsity model used in CS as they are derived based on a
tighter bound on the probability of error. We also discussed
and illustrated numerically the performance gap between
ML estimation and computationally tractable algorithms
(e.g. B-OMP) used for subspace recovery with the structured
union of subspaces model.

APPENDIX A
PROOF OF LEMMA 1

To prove Lemma 1, we use a similar argument to that
considered in [14] with certain differences as noted in the
following. As shown in [14], we may write,


i j (y) = ||P⊥
i y||22 − ||P⊥

i w||22 + ||P⊥
i w||22 − ||P⊥

j y||22.
For any given δ > 0, define the events

h1(δ) =
{

| ||P
⊥
j y||22 − ||P⊥

i w||22
σ 2

w

| ≥ δ

}
(36)

and

h2(δ) =
{

||P⊥
i y||22 − ||P⊥

i w||22
σ 2

w

≤ 2δ

}
. (37)

Then Pr(
i j (y) < 0) implies that at least one event
in (36) and (37) is true. Based on the union bound, we can
write

Pr(
i j (y) < 0) ≤ Pr(h1(δ)) + Pr(h2(δ)).

With the standard sparsity model and assuming that the
sampling is performed via random projections, upper bounds
on the probabilities Pr(h1(δ)) and Pr(h2(δ)) are derived
in [14]. In contrast, in the following, we derive an exact value
for Pr(h2(δ)) and a tighter bound for Pr(h1(δ)). Thus, even
for the standard sparsity model, the results presented in this
paper tighten those derived in [14].

We first evaluate Pr(h1(δ)). Let 
1
i j (y) = 1

σ 2
w
(||P⊥

j y||22 −
||P⊥

i w||22). Assuming the true subspace is S j , 
1
i j (y) reduces

to 
1
i j (y) = 1

σ 2
w
(||P⊥

j w||22 − ||P⊥
i w||22). As shown in [14], the

random variable 
1
i j (y) can be represented as 
1

i j (y) = x1−x2

where x1 and x2 are independent and x1, x2 ∼ X 2
l where l is

the cardinality of the set W j\i . With these notations, we can
write

Pr(h1(δ)) = Pr(|x1 − x2| ≥ δ)

= Pr((x1 − x2) ≥ δ) + Pr((x1 − x2) < −δ).

The pdf of the random variable w = x1 − x2 is symmetric
around zero and thus

Pr(h1(δ)) = 2Pr((x1 − x2) ≥ δ).

Proposition 3: When x1 ∼ X 2
l and x2 ∼ X 2

l , the random
variable w = x1 − x2 has the following pdf:

fw(w) =

⎧⎪⎨
⎪⎩

f +
w (w) = w

l
2 − 1

2√
π2l�(l/2)

K1/2−l/2
(

w
2

); if w ≥ 0

f −
w (w) = (−w)

l
2 − 1

2√
π2l�(l/2)

K1/2−l/2
(−w

2

); if w < 0

(38)

where Kν(x) is the modified Bessel function.
Proof: Since x1 and x2 are independent, the pdf of

w = x1 − x2 is given by [43]

fw(w) =
{ ∫∞

0 fx1(w + x2) fx2(x2)dx2; if w ≥ 0∫∞
−w fx1(w + x2) fx2(x2)dx2; if w < 0

First consider the case where w > 0. Then

f +
w (w) =

∫ ∞

0

(w + x2)
l/2−1e−(w+x2)/2

2l/2�(l/2)

xl/2−1
2 e−x2/2

2l/2�(l/2)
dx2

= e−w/2

2l(�(l/2))2

∫ ∞

0
xl/2−1

2 (w + x2)
l/2−1e−x2dx2

= e−w/2

2l(�(l/2))2

1√
π

wl/2−1/2ew/2�(l/2)K1/2−l/2(w/2)

= wl/2−1/2 K1/2−l/2(w/2)√
π2l�(l/2)

where Kν(x) is the modified Bessel function and the third
equality is obtained using the integral result∫ ∞

0
xν−1(x + β)ν−1e−μx dx

= 1√
π

(
β

μ

)ν−1/2

eβμ/2�(ν)K1/2−ν

(
βμ

2

)
(39)

for μ, ν > 0 in [44, p. 348].
When w < 0, we have,

f −
w (w) = e−w/2

2l(�(l/2))2

∫ ∞

−w
xl/2−1

2 (w + x2)
l/2−1e−x2dx2.

(40)

Letting z = −w where z > 0, (40) can be rewritten as,

f −
w (w) = ez/2

2l(�(l/2))2

∫ ∞

z
xl/2−1

2 (x2 − z)l/2−1e−x2dx2.

(41)

Using the integral result,∫ ∞

u
xν−1(x − u)ν−1e−μxdx

= 1√
π

(
u

μ

)ν−1/2

e−μu/2�(ν)Kν−1/2

(μu

2

)
(42)



2112 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 61, NO. 4, APRIL 2015

in [44, p. 347] and the relation Kν(x) = K−ν(x), we get
f −
w (w) as in (38), completing the proof.
Proposition 4: For δ > 0, the probability Pr(w > δ) is

given by

Pr(w > δ) ≤
√

2

2l+1�(l/2)
δl/2−1/2Kl/2−1/2(δ/2)

where Kν(x) is the modified Bessel function, and �(.) is the
Gamma function.

Proof: Based on (38), we have

Pr(w > δ) =
∫ ∞

δ
f +
w (w)dw

=
∫ ∞

δ

wl/2−1/2 K1/2−l/2(w/2)√
π2l�(l/2)

dw. (43)

Using the equivalent integral representation [44, p. 917]

Kν(az) = zν

2

∫ ∞

0
e
− a

2

(
t+ z2

t

)
t−ν−1dt

we can write the integral in (43) as,

Pr(w > δ)

= 1√
π2l+1�(l/2)

∫ ∞

δ

∫ ∞

0
e
− 1

4

(
t+ w2

t

)
tl/2−3/2dtdw.

(44)

Since
∫∞
δ e− w2

4t dw = √
2π Q

(
δ√
2t

)
, (44) reduces to,

Pr(w > δ) =
√

2

2l+1�(l/2)

∫ ∞

0
e−t/4tl/2−3/2 Q

(
δ√
2t

)
dt

≤
√

2

2l+2�(l/2)

∫ ∞

0
tl/2−3/2e−t/4− δ2

4t dt (45)

=
√

2

2l+1�(l/2)
δl/2−1/2 Kl/2−1/2(δ/2) (46)

where we used the inequality Q(x) ≤ 1
2 e− x2

2 for x > 0,

and the relation,
∫∞

0 xν−1e−β/x−γ xdx = 2
(

β
γ

)ν/2
Kν(2

√
βγ )

for β > 0 and γ > 0 [44, p. 368] to obtain (45) and (46),
respectively, which completes the proof.

We have

Pr(h1(δ)) =
√

2

2l�(l/2)
δl/2−1/2 Kl/2−1/2(δ/2).

Next we compute the quantity Pr(h2(δ)). Let

2

i j (y) = 1
σ 2

w
(||P⊥

i y||22 − ||P⊥
i w||22). Then


2
i j (y) = 1

σ 2
w

(||P⊥
i B j\i c j\i ||22 + 2wT P⊥

i B j\ic j\i).

Since w ∼ N (0, σ 2
wIM ), 
2

i j (y) is a Gaussian random variable
with pdf,


2
i j (y) ∼ N

(
1

σ 2
w

||P⊥
i B j\i c j\i ||22,

4

σ 2
w

||P⊥
i B j\i c j\i ||22

)
.

Thus,

Pr(h2(δ)) = Pr
(

2

i j (y) ≤ 2δ
)

= 1 − Q

⎛
⎝2δ − 1

σ 2
w
||P⊥

i B j\ic j\i ||22
2

σw
||P⊥

i B j\i c j\i ||2

⎞
⎠

= 1 − Q

(
2δ − λ j\i

2
√

λ j\i

)
.

Since it is desired to control δ such that Pr(h2(δ)) ≤ 1/2,
we select δ∗ = η0λ j\i where η0 < 1

2 . With this choice
Pr(h2(δ)) reduces to

Pr(h2(δ)) = Q

(
1

2

√
λ j\i(1 − 2η0)

)

where we used the relation 1 − Q(−x) = Q(x) for x > 0,
while Pr(h1(δ)) reduces to,

Pr(h1(δ)) =
√

2

2l�(l/2)
(η0λ j\i )

l/2−1/2Kl/2−1/2(η0λ j\i/2).

(47)

APPENDIX B
PROOF OF THEOREM 2

To obtain conditions under which the probability of error
bound in (20) asymptotically vanishes, we rely on the follow-
ing corollary.

Corollary 2: Let T0(l) and α2
min,l be as defined in

Subsection III.B. The probability of error of ML estimation
in (20) is further upper bounded by

Pe ≤
k∑

l=1

T0(l)

(
1

2
e− 1

8 (1−2η0)
2(M−k)α2

min,l + φl

)
(48)

where

φl =
√

2π

4�(l/2)

(
1

4
η0(M − k)α2

min,l

)l/2−1

e− 1
2 η0(M−k)α2

min,l

(49)

when (M − k)α2
min,l >> (l/2 − 1/2) for all l = 1, 2, · · · , k

and 0 < η0 < 1/2.
Proof: Using the Chernoff bound for the Q function

Q(x) ≤ 1
2 e− x2

2 , we have

Q

(
1

2
(1 − 2η0)

√
(M − k)α2

min,l

)

≤ 1

2
e− 1

8 (1−2η0)
2(M−k)α2

min,l

for η0 < 1
2 .

To obtain (49) we used the relation Kν(z) ≈
√

π
2z e−z when

ν << z, completing the proof.
It is further noted that when k is fairly small and α2

min,l
is sufficiently large, the condition required for (49) is often
satisfied. We consider the conditions under which each term
in (48) goes to 0 asymptotically, equivalently, the logarithm of
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each term → −∞. Consider the first term in the summation
in (48) for which the logarithm gives,

log T0(l) + log(1/2) − 1

8
(1 − 2η0)

2(M − k)α2
min,l

≤ max
l

{
log(T0(l)) + log(1/2)

− 1

8
(1 − 2η0)

2(M − k) α2
min,l

}
→ −∞

as (M − k) → ∞ when M > k + M1 where

M1 = max
l=1,··· ,k

{
8

(1 − 2η0)2α2
min,l

{log(T0(l)) + log(1/2)}
}

.

To treat the second term in (48), let

�1 = log T0(l) + log

(
b0

�(l/2)

)

+ (l/2 − 1) log

(
1

4
η0(M − k)α2

min,l

)

− 1

2
η0(M − k)α2

min,l (50)

where b0 =
√

2π
4 . When 1

4η0(M − k)α2
min,l is suffi-

ciently large, we can find 0 < q0 < 1
(k/2−1) such that

log
(

1
4η0(M − k)α2

min,l

)
< q0

1
2η0(M − k)α2

min,l . Then (50)
is upper bounded by

�1 ≤ max
l=1,··· ,k

{
log(T0(l)) + log

(
b0

�(3/2)

)

−
(

1

2
η0(M − k)α2

min,l

)
(1 − q0(k/2 − 1))

}

= �2 (51)

where 0 < q0 < 1
(k/2−1) . We can write q0 in the form of

q0 = 1
2(k/2+r0−1) for some r0 > 0. Thus, (51) can be rewritten

as

�2

= max
l=1,··· ,k

{
log(T0(l)) + log

(
2b0√

π

)

−
(

1

2
η0(M − k)α2

min,l

)
r0

r0 + k/2 − 1

}
→ −∞

as (M − k) → ∞ when M > k + M2 where

M2 = max
l=1,··· ,k

{
2(k/2 + r0 − 1)

r0η0α
2
min,l

{
log(T0(l))+ log

(
2b0√

π

)}}
,

0 < η0 < 1/2, b0 =
√

2π
4 , and r0 > 0.

APPENDIX C
PROOF OF PROPOSITION 1

We rewrite λ j\i = 1
σ 2

w
||P⊥

i B j\ic j\i ||22. The tth element of
the vector B j\i c j\i can be written as 〈at ,

∑
m∈W j\i

v jmc j (m)〉
where at is the t th row vector of A for t = 0, 1, · · · , M − 1.
Assuming that the elements of A are independent Gaussian
with mean zero and variance 1, it can be easily seen that

〈at ,
∑

m∈W j\i

v jmc j (m)〉 is a realization of a Gaussian random

variable with mean zero and variance || ∑
m∈W j\i

v jmc j (m)||22.

Further, the elements of B j\i c j\i are independent of each other
since at ’s are independent for t = 0, 1, · · · , M − 1. Thus, the
random vector B j\ic j\i ∼ N (0, || ∑

m∈W j\i

v jmc j (m)||22IM ).

Consider again the transformation QT
i B j\i c j\i where Qi is

the unitary matrix with eigenvectors of P⊥
i . Since the elements

in B j\ic j\i are independent and identically distributed (iid),
the unitary transformation does not change the distribution
of B j\ic j\i . Then ||P⊥

i B j\ic j\i ||22 = ||�i QT
i B j\ic j\i ||22 is a

sum of M − k iid random variables. Thus when (M − k) is
sufficiently large, invoking the law of large numbers, we may
approximate ||P⊥

i B j\ic j\i ||22 → (M − k)|| ∑
m∈W j\i

v jmc j (m)||22
which completes the proof.
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